Telegram Group & Telegram Channel
Forwarded from Machinelearning
⭐️ The Illustrated DeepSeek-R1

Одно из лучших иллюстрированных объяснение внутренностей DeepSeek-R1.
Читать

⭐️ Видео генератор Pika 2.1 официально выпущен ​​— поддерживает разрешение 1080p и генерирует более согласованные и детализированные на видео.
Попробовать

⭐️ DeepSeek-R1 теперь может работать в 1.58-битном режиме, оставаясь при этом полностью функциональным. Умельцы из Unsloth AI уменьшили размер модели 671B с 720 ГБ до 131 ГБ - это на 80 % меньше.

Наивное квантование всех слоев полностью ломает модель, вызывая бесконечные циклы и тарабарщину на выходе. Их динамические кванты решают эту проблему.

1,58-битный квант помещается в 160 ГБ VRAM (2x H100 80 ГБ) для быстрого вывода со скоростью ~140 токенов/сек.

Изучив архитектуру DeepSeek-R1, разработчики выборочно квантовали определенные слои в более высокие биты (например, в 4-битные), а большинство слоев MoE оставили в 1,5 бита.
Бенчмарки + блог
GGUF (131-212 ГБ) на Hugging Face:

⭐️ YuE (乐) - новая мощная модель генерации музыки с открытым исходным кодом! 🎵 Поддерживает преобразования текста в песню (как Suno.ai) с поддержкой различных жанров, вокала и множества языков. Модель совместима с Hugging Face и LLAMA.
Код
Демо

⭐️ Qwen 2.5-VL – обновленная визуальная модель, доступная в трех размерах: 3B, 7B и 72B параметров.
Qwen-2.5-VL
Qwen-2.5-1M


⭐️Netflix выпустили Go-with-the-Flow
Netflix выпустили новый алгоритм искажения шума для генерации видео, достаточно быстрый, чтобы работать в реальном времени, который заменяет случайную временную гауссиану на коррелированный искаженный шум, полученный из полей оптического потока, который сохраняет при этом пространственную гауссиану. Эффективность алгоритма позволяет тонко настраивать современные модели диффузии видео с минимальными расходами и предоставляет универсальное решение для широкого спектра управления движением на видео. Обширные эксперименты и исследования демонстрируют преимущества метода, делая его надежным и масштабируемым подходом для управления движением в диффузионных моделях видео.
HF
Github

⭐️ «Awesome DL-Based MRI Reconstruction» - новый Awesome репозиторий, содержащий ресурсы, инструменты и научные статьи, посвященные использованию глубокого обучения для ускорения получения магнитно-резонансных изображений. Созданный для обмена знаниями и сотрудничества, он служит важным руководством для исследователей и медиков со всего мира.
Github

@ai_machinelearning_big_data


#ai #ml #news #llm #deepseek #Netflix #Qwen #Pika #news #ainews
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1495
Create:
Last Update:

⭐️ The Illustrated DeepSeek-R1

Одно из лучших иллюстрированных объяснение внутренностей DeepSeek-R1.
Читать

⭐️ Видео генератор Pika 2.1 официально выпущен ​​— поддерживает разрешение 1080p и генерирует более согласованные и детализированные на видео.
Попробовать

⭐️ DeepSeek-R1 теперь может работать в 1.58-битном режиме, оставаясь при этом полностью функциональным. Умельцы из Unsloth AI уменьшили размер модели 671B с 720 ГБ до 131 ГБ - это на 80 % меньше.

Наивное квантование всех слоев полностью ломает модель, вызывая бесконечные циклы и тарабарщину на выходе. Их динамические кванты решают эту проблему.

1,58-битный квант помещается в 160 ГБ VRAM (2x H100 80 ГБ) для быстрого вывода со скоростью ~140 токенов/сек.

Изучив архитектуру DeepSeek-R1, разработчики выборочно квантовали определенные слои в более высокие биты (например, в 4-битные), а большинство слоев MoE оставили в 1,5 бита.
Бенчмарки + блог
GGUF (131-212 ГБ) на Hugging Face:

⭐️ YuE (乐) - новая мощная модель генерации музыки с открытым исходным кодом! 🎵 Поддерживает преобразования текста в песню (как Suno.ai) с поддержкой различных жанров, вокала и множества языков. Модель совместима с Hugging Face и LLAMA.
Код
Демо

⭐️ Qwen 2.5-VL – обновленная визуальная модель, доступная в трех размерах: 3B, 7B и 72B параметров.
Qwen-2.5-VL
Qwen-2.5-1M


⭐️Netflix выпустили Go-with-the-Flow
Netflix выпустили новый алгоритм искажения шума для генерации видео, достаточно быстрый, чтобы работать в реальном времени, который заменяет случайную временную гауссиану на коррелированный искаженный шум, полученный из полей оптического потока, который сохраняет при этом пространственную гауссиану. Эффективность алгоритма позволяет тонко настраивать современные модели диффузии видео с минимальными расходами и предоставляет универсальное решение для широкого спектра управления движением на видео. Обширные эксперименты и исследования демонстрируют преимущества метода, делая его надежным и масштабируемым подходом для управления движением в диффузионных моделях видео.
HF
Github

⭐️ «Awesome DL-Based MRI Reconstruction» - новый Awesome репозиторий, содержащий ресурсы, инструменты и научные статьи, посвященные использованию глубокого обучения для ускорения получения магнитно-резонансных изображений. Созданный для обмена знаниями и сотрудничества, он служит важным руководством для исследователей и медиков со всего мира.
Github

@ai_machinelearning_big_data


#ai #ml #news #llm #deepseek #Netflix #Qwen #Pika #news #ainews

BY Machine learning Interview







Share with your friend now:
tg-me.com/machinelearning_interview/1495

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

Machine learning Interview from us


Telegram Machine learning Interview
FROM USA